Abstract

Diabetic retinopathy is a serious eye disease that originates from diabetes mellitus and is the most common cause of blindness in the developed countries. This study describes the use of image processing and deep learning to diagnose diabetic retinopathy from retinal fundus images. For retinal fundus images enhancement approach, a practical method which contains HSV, V transform algorithm and histogram equalization technics was used. Finally, Gaussian low-pass filter was applied to the retinal fundus image. After the image processing, the classification was made using the Convolutional Neural Network. The performance of the proposed method was assessed using 400 retinal fundus images in the Kaggle Diabetic Retinopathy Detection database. In experiments, classification work has been done for each stage of the image processing. The classification study performed after image processing. Twenty experiments were done for every stage and average values were found. In this experiment, the accuracy was 96.67%, the sensitivity was 93.33%, the specificity was 93.33%, the precision was 93.33%, the recall was 93.33%, and the F-score was 93.33%. The obtained results show that the proposed method is very efficient and successful to diagnose diabetic retinopathy from retinal fundus images.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.