Abstract

Different methods for diagnostics of ultrashort electron bunches are developed at JINR-DESY collaboration within the framework of the FLASH and XFEL projects and JINR participation in the ILC project. The main peculiarity of these accelerator complexes is related to formation of ultrashort electron bunches with r.m.s. length 20–300 μm. Novel diagnostics is required to provide femtoscaie time resolution in the modem FEL like FLASH and future XFEL and ILC projects. Photon diagnostics developed at JINR-DESY collaboration for ultrashort bunches is based on calorimetric measurements and detection of undulator radiation. The MCP-based radiation detectors are effectively used at FLASH for pulse energy measurements. The infrared undulator constructed at JINR and installed at FLASH is used for longitudinal bunch shape measurements and for two-color lasing provided by the FIR and VUV undulators. Two-color lasing in pump-probe experiments permits one to investigate dynamics of atomic and molecular systems with time resolution of 100–500 fs. A special magnetic spectrometer is planning to be used at ILC for measurements of average electron energy in each bunch. The first test spectrometer measurements were performed within the JINR-DESY-SLAC collaboration. A special synchrotron radiation detector applied for measurement of bunch average electron energy was constructed at JINR.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.