Abstract
Cold water coral covered carbonate mounds at the south-west margin of the Rockall Trough form ridges several kilometres long and up to 380 m high. Piston cores obtained at three mound crests reveal the complex internal structure of the mound build up, with alternating unlithified coral-dominated intervals and lithified intervals. The most recent lithified interval is covered by corals embedded in a fine-grained matrix, comprising ca 11 000 years of continuous mound evolution. Before this time 230Th/U dating shows the presence of several hiatuses in mound build-up. Aragonitic coral material is absent or only present as mouldic porosity in the lithified intervals and coccoliths display widespread overgrowth. Downcore X-ray fluorescence scanning, computer tomography scan images and petrographic observations indicate different degrees of diagenetic alteration. The upper boundary of the most recent lithified interval shows some erosional features, but petrographic observations indicate that initial lithification of the sediments is not related to this erosive event or to long-term non-sedimentation, but to earlier sub-surface diagenesis. Organic matter oxidation and the subsequent lowering of the saturation state of the carbonate system drives dissolution of the unstable aragonitic coral skeletons. Depending on the openness of the system, this can lead to precipitation of a more stable low-magnesium carbonate. A model is presented describing the sedimentary and diagenetic processes leading to the formation of lithified intervals.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.