Abstract

Three types of chemically and isotopically distinct pore fluids from the southern San Joaquin basin previously recognized by J.B. Fisher and J.R. Boles also have distinctive 87 Sr 86 Sr ratios and Sr concentrations. Meteoric fluids have stable isotopic compositions which lie on or near the meteoric water line and low chlorinities. Sr concentrations are between 0.01 and 2.6 mg l −1, and 87 Sr 86 Sr ratios range from 0.7061 to 0.7078. Diagenetically modified connate marine fluids have δD-and δ 18O-values more positive than −35‰ and 0‰, respectively, and have chlorinities generally comparable to seawater. Sr concentration are much higher than the meteoric group (16–198 mg l −1), although the 87 Sr 86 Sr ratios (0.7070–0.7081) are not distinctive. Mixed meteoric-modified connate fluids have δD, δ 18 O and chlorinity intermediate between the meteoric and modified connate groups. Sr concentrations are also intermediate, between 16 and 22 mg l −1, but 87 Sr 86 Sr ratios (0.7080–0.7087) are generally more radiogenic than either the meteoric or modified connate groups. All of the fluids have 87 Sr 86 Sr ratios comparable to or lower than Tertiary seawater. Alteration of detrital plagioclase is the probable origin of the low isotopic ratios. Mass-balance calculations based on the Sr data suggest that essentially no transport of Sr occurred during diagenesis of sandstones containing modified connate pore fluids, while large amounts of Sr have been transported out of meteoric reservoirs by fluid flow. The chemically anomalous mixed meteoric-modified connate fluids contain the most radiogenic strontium in the basin. These fluids are spatially associated with major faults, and may represent clay mineral dehydration waters which have been transported upward from greater depth. These results suggest that the three types of fluids identified by Fisher and Boles represent three distinct mass transport regimes: a largely stagnant deep-basin system containing modified connate pore fluids; an actively recharging meteoric system along the basin flanks; and a third system restricted to the southern basin which may be characterized by largescale cross-formational fluid flow, rather than dilution by meteoric waters.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call