Abstract

Authigenic gypsum was found in a gravity core, retrieved from the top of Mound Perseverance, a giant cold-water coral mound in the Porcupine Basin, off Ireland. The occurrence of gypsum in such an environment is intriguing, because gypsum, a classic evaporitic mineral, is undersaturated with respect to sea water. Sedimentological, petrographic and isotopic evidence point to diagenetic formation of the gypsum, tied to oxidation of sedimentary sulphide minerals (i.e. pyrite). This oxidation is attributed to a phase of increased bottom currents which caused erosion and enhanced inflow of oxidizing fluids into the mound sediments. The oxidation of pyrite produced acidity, causing carbonate dissolution and subsequently leading to pore-water oversaturation with respect to gypsum and dolomite. Calculations based on the isotopic compositions of gypsum and pyrite reveal that between 21·6% and 28·6% of the sulphate incorporated into the gypsum derived from pyrite oxidation. The dissolution of carbonate increased the porosity in the affected sediment layer but promoted lithification of the sediments at the sediment-water interface. Thus, authigenic gypsum can serve as a signature for diagenetic oxidation events in carbonate-rich sediments. These observations demonstrate that fluid flow, steered by environmental factors, has an important effect on the diagenesis of coral mounds.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.