Abstract

Interstitial brines from the Temblor and the McAdams sandstones at Kettleman are essentially NaCaCl solutions with subsidiary SO 4 and the total salinities are roughly 30,000 and 10,000 ppm, respectively. Activities of H + and all other aqueous species have been calculated for 100°C (the in situ temperatures of the brines) from chemical analyses of the brines and 100-degree dissociation constants alone. The brine alkalinities measured at surface temperature appear to be too low when comparing them against alkalinities calculated from the measured pHs of the brines. Consequently, alkalinities calculated for 25°C were substituted for the measured ones in the calculation of the distribution of aqueous species at 100°C. Although the brines are nearly neutral (pH 6·3–d7·9) at surface temperature, their pHs calculated for 100°C range from 8·1 to 8·7 (± 0·35). These pHs and the 100-degree activities of the other aqueous species permit graphic representation of the brines on activity diagrams. Most brines fall at or near the boundaries between the stability fields of quartz, albite, microcline, mica, montmorillonite and anhydrite. Because these minerals are present as authigenic phases in the sandstones, the calculations suggest that the minerals are in stable equilibrium with the brines. By contrast, the calculations suggest that the brines are supersaturated by about three orders of magnitude with respect to calcite, also present in the sandstones. One possible explanation for this is kinetic inhibition of calcite crystallization by Mg 2+ and SO 4 2− ions in the brines. Phosphatic pellets, glauconite and probably dolomite, pyrite and some kaolinite are early authigenic minerals preserved in the sandstones and they are not now in equilibrium with the brines, which are supersaturated with respect to dolomite and pyrite. The chemical relationship between the brines and the diagenetic minerals laumontite and sphene, also present in the Temblor Formation, cannot be assessed reliably until the thermodynamic properties of laumontite and of aqueous titanium complexes are well known.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call