Abstract
Abstract Uplift of sedimentary rocks is accompanied by a wide range of physical and chemical changes that contribute to diagenesis and modify fluid flow regimes. Topography becomes a major driving force behind fluid flow patterns, and meteoric water may penetrate to several kilometres below the surface. Typical diagenetic processes include alteration and leaching of feldspars and other unstable minerals, precipitation of iron oxides and kaolin, and leaching of carbonate and sulphate cements. Reservoired oil may be degraded by near-surface waters, but reservoir rocks may become more oil-wet. Brittle fracturing is enhanced near the surface, and fluid flow may become predominantly fracture-bound as fractures dilate. Uplift also causes tilting of fluid contacts and remigration of hydrocarbons. Exsolution and expansion of gas similarly causes remigration of oil to peripheral traps. Although basin uplift is generally regarded as being detrimental to hydrocarbon prospectivity, especially as a result of breaching of traps, there is also an enhanced potential for hydrocarbon plays based on reserves of exsolved gas, condensate dropout, peripheral traps and fractured reservoirs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.