Abstract

This paper presents a Metropolis Monte Carlo (MMC) computer program developed to simulate liquids and solutions including QM/MM facilities: the energy from intermolecular interactions is calculated with classical force field functions and the internal molecular energies are calculated using Quantum Chemistry methods. The following facilities were implemented: (i) the semiempirical MOPAC 6 quantum chemistry package was included as a subroutine of the main MMC simulation program; (ii) alternatively, an interface with an external data bank was developed to allow the use of energies previously obtained; (iii) calculation in NpT and NVT ensembles are available; (iv) the trajectory generated along the MMC sampling can be saved using standard xtc file format allowing trajectory visualization and data analysis using external programs. The program was used to calculate thermodynamical and structural properties of liquids ethanol (ET) in the NpT ensemble at 1.0 atm and 298 K. Bond angles and bond distances of ethanol molecules were kept constant but torsions along the dihedral angle defined by the H-O-C-C atoms were sampled in the simulation. QM/MM calculations were performed using the MOPAC AM1, PM3 and MNDO Hamiltonians to calculate the internal molecular energy. Calculations using internal energies obtained with OPLS-AA force field, ab initio HF/6-31g*, MP2/6-31g* and B3LYP/6-31g* calculations were performed. The dihedral angles distributions obtained with different methodologies reveal extraordinary qualitative and quantitative differences. However, the pair energies and radial distributions functions obtained with the different methodologies are in good agreement. The values calculated for the density and enthalpy of vaporization of liquid ethanol are in good agreement with experimental data.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.