Abstract

The mechanism of Ca(2+) influx in nonexcitable cells is not known yet. According to the capacitative hypothesis, Ca(2+) influx is triggered by IP(3)-mediated Ca(2+) release from the intracellular Ca(2+) stores. Conversely, many workers have reported a lack of association between release and influx. In this work, the role of diacylglycerol (DAG) as the mediator of T-cell receptor (TCR)-driven Ca(2+) influx in T cells was investigated. Stimulation of mouse splenic T cells with naturally occurring DAG caused Ca(2+) entry in a dose- and time-dependent manner. Such stimulation was blocked by Ni(2+), a divalent cation known to block Ca(2+) channels. Inhibition of protein kinase C (PKC) by calphostin C did not inhibit, but slightly enhanced, the DAG-stimulated Ca(2+) entry. However, inhibition of DAG metabolism by DAG kinase and lipase inhibitors enhanced the DAG-stimulated Ca(2+) entry. DAG lipase and kinase inhibitors also enhanced the Ca(2+) entry in T cells stimulated through TCR/CD3 complex with anti-CD3 antibody. Calphostin C did not affect the anti-CD3-stimulated Ca(2+) entry. These results showed that TCR-driven Ca(2+) influx in T cells is mediated by DAG through a novel mechanism(s) independent of PKC activation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call