Abstract

Dysregulation of monocyte and macrophage responses are often observed in children with systemic juvenile idiopathic arthritis (sJIA) and cytokine storm syndrome (CSS), a potentially fatal complication of chronic rheumatic diseases. Both conditions are associated with activation of TLR signaling in monocyte and macrophage lineage cells, leading to overwhelming inflammatory responses. Despite the importance of TLR engagement in activating proinflammatory macrophages, relatively little is known about activation of intrinsic negative regulatory pathways to attenuate excessive inflammatory responses. In this study, we demonstrate that loss of diacylglycerol (DAG) kinase (Dgk) ζ, an enzyme which converts DAG into phosphatidic acid, limits inflammatory cytokine production in an arthritic mouse model dependent on TLR2 signaling and in a CSS mouse model dependent on TLR9 signaling. In vitro, Dgkζ deficiency results in reduced production of TNF-α, IL-6, and IL-1β and in limited M1 macrophage polarization. Mechanistically, Dgkζ deficiency decreases STAT1 and STAT3 phosphorylation. Moreover, Dgkζ levels are increased in macrophages derived from mice with CSS or exposed to plasma from sJIA patients with active disease. Our data suggest that Dgkζ induction in arthritic conditions perpetuates systemic inflammatory responses mediated by macrophages and highlight a potential role of Dgkζ-DAG/phosphatidic acid axis as a modulator of inflammatory cytokine production in sJIA and CSS.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.