Abstract

The hydrolysis of HDL phospholipids (PL) and glycerides by hepatic lipase (HL) has been investigated in native and reconstituted HDL particles (Lp2A-I). Fasting, normolipidemic HDL exhibit total lipid hydrolytic rates of between 10 and 36 nM FA/h per microM PL. Of the total fatty acids liberated with HDL3 only 1% are from triolein (TG), while 49% are from diolein (DG) and 50% are from PL. A spherical reconstituted particle containing 2 molecules of apoA-I, 120 molecules of PL, and 20 molecules of TG exhibits a total lipid hydrolytic rate of 18 nM FA/h per microM PL and 93% of the fatty acids liberated are from PL. Inclusion of 40 molecules of TG into the Lp2A-I particle doubles the rate of fatty acid hydrolysis by HL through a stimulation of TG hydrolysis. Further addition of 10 molecules of DG to the Lp2A-I complex has no effect on the overall rates of hydrolysis, but changes the substrate specificity, wherein 61% of the fatty acids are from DG and both TG and PL hydrolytic rates are significantly reduced. Increasing the amount of DG in the Lp2A-I particle further stimulates total lipid hydrolysis by raising DG hydrolytic rates at the expense of PL and TG hydrolysis. A particle containing 10 molecules of TG and 40 molecules DG yields the fastest lipid hydrolytic rate of 143 nM FA/h per microM PL, which constitutes 96% DG hydrolysis, 3% TG hydrolysis, and 1% PC hydrolysis. These data indicate that hepatic lipase acts primarily as a surface lipid lipase with HDL particles. DG is the preferred substrate of HL in HDL and the HDL-DG content regulates the hydrolysis of both PL and TG by HL.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.