Abstract
Changes in steady-state fluorescence anisotropy of 1 -(4-trimethylaminophenyl)-6-phenyl-1,3,5-hexatriene TMA-DPH) are applied to the detection of lamellar-hexagonal transitions in egg phosphatidylethanolamine. Even low (2 mole%) proportions of diacylglycerol decrease the hexagonal transition temperature considerably, as confirmed by differential scanning calorimetry. Diacylglycerol is also found to promote a lamellar to "isotropic" (Q(224) cubic) transition in mixtures of phosphatidylcholine: phosphatidylethanolamine:cholesterol. This nonreversible transition is also observed by (31)P nuclear magnetic resonance and detected as a large increase in TMA-DPH steady-state anisotropy. The same technique reveals as well that lysophosphatidylcholine counteracts the effect of diacylglycerol and stabilizes the lamellar phase in both transitions. Diacylglycerol and lysophosphatidylcholine are known to respectively promote and inhibit membrane fusion in a variety of systems. These data are interpreted in support of the hypothesis of a highly bent structural fusion intermediate ("stalk"). They also show the interest of lipid-phase studies in predicting and rationalizing membrane fusion mechanisms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.