Abstract

Diacylglycerol acyltranferase-2 (DGAT2) is a resident protein of the endoplasmic reticulum that catalyzes the synthesis of triacylglycerol. When lipid droplet formation is stimulated by incubating cells with fatty acids, DGAT2 becomes concentrated around the surface of cytosolic lipid droplets. Using confocal microscopy and directed mutagenesis, we have identified a 17-amino acid sequence in the C-terminal region of DGAT2 that is necessary and sufficient for targeting DGAT2 to lipid droplets. When this region was deleted, DGAT2 remained in the ER and did not target to lipid droplets. Fusing this sequence to mCherry directed the fluorescent reporter to lipid droplets. Similarly, when the corresponding region of monoacylglycerol acyltransferase-2 (MGAT2) was replaced with this sequence, MGAT2 was also targeted to lipid droplets. Lastly, we demonstrated that DGAT2 in ER membranes is continuous with lipid droplets. We propose a new model whereby DGAT2 remains in the ER during lipid droplet formation via it's transmembrane domains and interacts with nascent lipid droplets via its C-terminal lipid droplet interacting domain as they expand.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call