Abstract
Abstract The last deglaciation is the most recent interval of large-scale climate change that drove the Greenland ice sheet from continental shelf to within its present extent. Here, we use a database of 645 published 10Be ages from Greenland to document the spatial and temporal patterns of retreat of the Greenland ice sheet during the last deglaciation. Following initial retreat of its marine margins, most land-based deglaciation occurred in Greenland following the end of the Younger Dryas cold period (12.9–11.7 ka). However, deglaciation in east Greenland peaked significantly earlier (13.0–11.5 ka) than that in south Greenland (11.0–10 ka) or west Greenland (10.5–7.0 ka). The terrestrial deglaciation of east and south Greenland coincide with adjacent ocean warming. 14C ages and a recent ice-sheet model reconstruction do not capture this progression of terrestrial deglacial ages from east to west Greenland, showing deglaciation occurring later than observed in 10Be ages. This model-data misfit likely reflects the absence of realistic ice-ocean interactions. We suggest that oceanic changes may have played an important role in driving the spatial-temporal ice-retreat pattern evident in the 10Be data.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.