Abstract
Blood and its cellular components are irradiated by ionizing radiation before transfusion to prevent the proliferation of viable T lymphocytes which cause transfusion associated-graft versus host disease. The immunodeficient patients undergoing chemotherapy for various malignancies are at risk of this disease. The international guidelines for blood transfusion recommend a minimum radiation exposure of 25 Gray (Gy) to the midplane of the blood bag, while a minimum dose of 15 Gy and a maximum dose of 50 Gy should be given to each portion of the blood bag. Therefore, precise dosimetry of the blood irradiator is essential to ensure the adequate irradiation of the blood components. The paper presents the fabrication of diacetylene-based colorimetric film dosimeters for the verification of irradiated doses. The diacetylene analogues are synthesized by tailoring them with different amide-based headgroups followed by their coating to develop colorimetric film dosimeters. Among all the synthesized diacetylene analogues, aminofluorene-substituted diacetylene exhibits the most significant color transition from white to blue color at a minimum γ radiation dose of 5 Gy. The quantitative study of color change is performed by the digitization of the scanned images of film dosimeters. The digital image processing of the developed film dosimeters facilitates rapid dose measurement which enables their facile implementation and promising application in routine blood irradiator dosimetry.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.