Abstract

Cardiovascular complications are the leading cause of morbidity and mortality in patients with diabetes mellitus; up to 80% of deaths in patients with diabetes are closely associated with vascular disease. The ability of the organism to form a collateral network of blood vessels constitutes an important response to vascular occlusive disease and determines to a large part the clinical consequences and severity of tissue ischemia. The development of new vessels is significantly reduced in diabetic patients with coronary or peripheral artery disease. This probably contributes to the severe course of limb ischemia in diabetic patients, in which peripheral artery disease often results in foot ulceration and lower extremity amputation. Diabetic retinopathy remains one of the major causes of acquired blindness in developed nations. This is true despite the development of laser treatment, which can prevent blindness in the majority of those who develop macular edema or proliferative diabetic retinopathy. The hallmark of diabetic retinopathy is the lack of microvessels in the macula, leading to hypoxia, associated with peripheral retinal neovascularization that may ultimately cause severe vitreous cavity bleeding and/or retinal detachment. The factors that stimulate retinal blood vessel growth have not been fully defined, but there is accumulating evidence that the renin-angiotensin-bradykinin system may be involved in a number of retinal vascular disorders, including retinopathy of prematurity and proliferative diabetic retinopathy. Only a few studies have specifically evaluated the effect of diabetes on angiogenesis in ischemic vascular disease and in the retina. Moreover, the mechanisms by which diabetes could both limit the formation of new blood vessels in most organs and simultaneously induce proliferative diabetic retinopathy remain largely undefined. In the present review, we aimed to briefly describe the main molecular mechanisms involved in the ischemia-induced angiogenesis, and their alterations in diabetes. Possible therapeutic strategies to restore angiogenesis in diabetic patients are also listed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.