Abstract

The early diagnosis of diabetic retinopathy (DR) can effectively prevent irreversible vision loss and assist ophthalmologists in providing timely and accurate treatment plans. However, the existing methods based on deep learning have a weak perception ability of different scale information in retinal fundus images, and the segmentation capability of subtle lesions is also insufficient. This paper aims to address these issues and proposes MLNet for DR lesion segmentation, which mainly consists of the Multi-Scale Attention Block (MSAB) and the Lesion Perception Block (LPB). The MSAB is designed to capture multi-scale lesion features in fundus images, while the LPB perceives subtle lesions in depth. In addition, a novel loss function with tailored lesion weight is designed to reduce the influence of imbalanced datasets on the algorithm. The performance comparison between MLNet and other state-of-the-art methods is carried out in the DDR dataset and DIARETDB1 dataset, and MLNet achieves the best results of 51.81% mAUPR, 49.85% mDice, and 37.19% mIoU in the DDR dataset, and 67.16% mAUPR and 61.82% mDice in the DIARETDB1 dataset. The generalization experiment of MLNet in the IDRiD dataset achieves 59.54% mAUPR, which is the best among other methods. The results show that MLNet has outstanding DR lesion segmentation ability.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call