Abstract

AbstractDiabetic retinopathy is an eye disease that occurs with damage to the retina and has many different complications, ranging from permanent blindness. The aim of this study is to develop a (convolutional neural network) CNN model that determines with high accuracy whether fundus images are diabetic retinopathy. The performance of the model has been verified in Kaggle APTOS 2019 dataset with AlexNET and VggNET-16 deep transfer learning algorithms. Various image processing techniques have been used as well as deep learning methods to further improve the classification performance. Images in the data set were rescaled to 224 × 224 × 3 and converted to Grayscale color space. Besides Gauss filter applied to eliminate the noise in the images. The area under the curve (AUC), precision, recall, and accuracy metrics of the deep transfer learning models used in this study were compared. The AlexNet model achieved a 98.6% AUC score, 95.2% accuracy, and the VggNET-16 model achieved a 99.6% AUC score and 98.1% accuracy. VggNET-16 was found to have higher confidence. Our results show that with the correct optimization of the CNN model applied in diabetic retinopathy classification, deep transfer learning models can achieve high performance and can be used in the detection of diabetic retinopathy patients.KeywordsDiabetic retinopathyDeep LearningClassification

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.