Abstract

Nephropathy is a major chronic complication of diabetes. A crucial role in renal pathophysiology is played by hydrogen sulphide (H2S) that is produced excessively by the kidney; however, the data regarding H2S bioavailability are inconsistent. We hypothesize that early type 1 diabetes (T1D) increases H2S production by a mechanism involving hyperglycaemia‐induced alterations in sulphur metabolism. Plasma and kidney tissue collected from T1D double transgenic mice were subjected to mass spectrometry‐based proteomic analysis, and the results were validated by immunological and gene expression assays.T1D mice exhibited a high concentration of H2S in the plasma and kidney tissue and histological, showed signs of subtle kidney fibrosis, characteristic for early renal disease. The shotgun proteomic analyses disclosed that the level of enzymes implicated in sulphate activation modulators, H2S‐oxidation and H2S‐production were significantly affected (ie 6 up‐regulated and 4 down‐regulated). Gene expression results corroborated well with the proteomic data. Dysregulation of H2S enzymes underly the changes occurring in H2S production, which in turn could play a key role in the initiation of renal disease. The new findings lead to a novel target in the therapy of diabetic nephropathy. Mass spectrometry data are available via ProteomeXchange with identifier PXD018053.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call