Abstract
Diabetes is a complex progressive disease characterized by chronic hyperglycaemia and dyslipidaemia associated with endothelial dysfunction. Oxidized LDL (Ox-LDL) is elevated in diabetes and may contribute to endothelial dysfunction. The aim of this study was to relate the serum levels of Ox-LDL with endothelial dysfunction in streptozotocin (STZ)-diabetic rats and to further explore the changes in endothelial nitric oxide synthase (eNOS) and caveolin-1 (CAV-1) expression in primary aortic endothelial cells. Diabetes was induced with a single intraperitoneal injection of STZ in male Wistar rats. During the hyperglycaemic diabetes state serum lipid markers, aortic relaxation and aortic endothelial cell eNOS and CAV-1 protein expressions were measured. Elevated serum Ox-LDL (STZ 1486±78.1pg/mL vs control 732.6±160.6pg/mL, P<.05) was associated with hyperglycaemia (STZ 29±0.9mmol/L vs control: 7.2±0.2mmol/L, P<.001) and hypertriglyceridaemia (STZ 9.0±1.5mmol/L vs control: 3.0±0.3mmol/L, P<.01) in diabetic rats. A significant reduction was observed in STZ-diabetic aortic endothelial cell eNOS and CAV-1 of 40% and 30%, respectively, accompanied by a compromised STZ-diabetic carbachol-induced vasodilation (STZ 29.6±9.3% vs control 77.2±2.5%, P<.001). The elevated serum Ox-LDL in hyperglycaemic STZ-diabetic rats may contribute to diabetic endothelial dysfunction, possibly through downregulation of endothelial CAV-1 and eNOS.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.