Abstract

Diabetes Mellitus is among critical diseases and lots of people are suffering from this disease. Age, obesity, lack of exercise, hereditary diabetes, living style, bad diet, high blood pressure, etc. can cause Diabetes Mellitus. People having diabetes have high risk of diseases like heart disease, kidney disease, stroke, eye problem, nerve damage, etc. Current practice in hospital is to collect required information for diabetes diagnosis through various tests and appropriate treatment is provided based on diagnosis. Big Data Analytics plays an significant role in healthcare industries. Healthcare industries have large volume databases. Using big data analytics one can study huge datasets and find hidden information, hidden patterns to discover knowledge from the data and predict outcomes accordingly. In existing method, the classification and prediction accuracy is not so high. In this paper, we have proposed a diabetes prediction model for better classification of diabetes which includes few external factors responsible for diabetes along with regular factors like Glucose, BMI, Age, Insulin, etc. Classification accuracy is boosted with new dataset compared to existing dataset. Further with imposed a pipeline model for diabetes prediction intended towards improving the accuracy of classification.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.