Abstract

Background and ObjectiveDiabetes mellitus is a metabolic disorder characterized by hyperglycemia, which results from the inadequacy of the body to secrete and respond to insulin. If not properly managed or diagnosed on time, diabetes can pose a risk to vital body organs such as the eyes, kidneys, nerves, heart, and blood vessels and so can be life-threatening. The many years of research in computational diagnosis of diabetes have pointed to machine learning to as a viable solution for the prediction of diabetes. However, the accuracy rate to date suggests that there is still much room for improvement. In this paper, we are proposing a machine learning framework for diabetes prediction and diagnosis using the PIMA Indian dataset and the laboratory of the Medical City Hospital (LMCH) diabetes dataset. We hypothesize that adopting feature selection and missing value imputation methods can scale up the performance of classification models in diabetes prediction and diagnosis. MethodsIn this paper, a robust framework for building a diabetes prediction model to aid in the clinical diagnosis of diabetes is proposed. The framework includes the adoption of Spearman correlation and polynomial regression for feature selection and missing value imputation, respectively, from a perspective that strengthens their performances. Further, different supervised machine learning models, the random forest (RF) model, support vector machine (SVM) model, and our designed twice-growth deep neural network (2GDNN) model are proposed for classification. The models are optimized by tuning the hyperparameters of the models using grid search and repeated stratified k-fold cross-validation and evaluated for their ability to scale to the prediction problem. ResultsThrough experiments on the PIMA Indian and LMCH diabetes datasets, precision, sensitivity, F1-score, train-accuracy, and test-accuracy scores of 97.34%, 97.24%, 97.26%, 99.01%, 97.25 and 97.28%, 97.33%, 97.27%, 99.57%, 97.33, are achieved with the proposed 2GDNN model, respectively. ConclusionThe data preprocessing approaches and the classifiers with hyperparameter optimization proposed within the machine learning framework yield a robust machine learning model that outperforms state-of-the-art results in diabetes mellitus prediction and diagnosis. The source code for the models of the proposed machine learning framework has been made publicly available.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call