Abstract

Diabetes insipidus (DI), be it from central or from nephrogenic origin, has to be differentiated from primary polydipsia. This differentiation is crucial since wrong treatment can have dangerous consequences. For decades, the “gold standard” for differential diagnosis has been the standard water deprivation test. However, this test has several limitations leading to an overall limited diagnostic accuracy. In addition, the test has a long duration of 17 h and is cumbersome for patients. Also clinical signs and symptoms and MRI characteristics overlap between patients with DI and primary polydipsia. Direct measurement of arginine vasopressin (AVP) upon osmotic stimulation was first shown to overcome these limitations, but failed to enter clinical practice mainly due to technical limitations of the AVP assay. Copeptin is secreted in equimolar ratio to AVP, mirroring AVP concentrations in the circulation. We have shown that copeptin, without prior fluid deprivation, identifies patients with nephrogenic DI. For the more difficult differentiation between central DI and primary polydipsia, a copeptin level of 4.9 pmol/L stimulated with hypertonic saline infusion differentiates between these 2 entities with a high diagnostic accuracy and is superior to the water deprivation test. However, it is important to note that close and regular sodium monitoring every 30 min during the hypertonic saline test is a prerequisite, which is not possible in all hospitals. Furthermore, side effects are common. Therefore, a nonosmotic stimulation test would be advantageous. Arginine significantly stimulates copeptin and therefore is a novel, so far unknown stimulus of this peptide. Consequently, infusion of arginine with subsequent copeptin measurement was shown to be an even simpler and better tolerated test, but head to head comparison is still lacking.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.