Abstract

BackgroundAlthough diabetes mellitus has been reported to aggravate liver ischaemia and reperfusion (IR) injury, the basic mechanism remains largely unknown. The object of the present study was to determine the role of oxidative stress and hepatocellular pyroptosis in liver IR injury in diabetic mice.MethodsDb/db and C57BL/6 mice at 8 weeks of age were subjected to liver IR injury. Liver injury and hepatocyte cell death were analyzed. A NOD-like receptor family pyrin domain-containing 3 protein (NLRP3) inflammasome antagonist (CY09) and a reactive oxygen species (ROS) antagonist (N-Acetyl-L-cysteine, NAC) were used to determine the role of ROS-mediated hepatocellular pyroptosis in diabetic mice post-IR.ResultsAggravated liver IR injury was found in db/db mice compared to C57BL/6 control mice, as demonstrated by increased serum alanine aminotransaminase (ALT) and aspartate aminotransaminase (AST) levels, liver architecture damage and Suzuki scores. Interestingly, IR induces the pyroptosis of hepatocytes in db/db mice, as evidenced by enhanced NLRP3 inflammasome activation, increased numbers of terminal deoxynucleotidyl transferase dUTP nick end labelling (TUNEL)-positive hepatocytes and increased gene expression of interleukin-1β (IL-1β) and IL-18 in livers post-IR. The inhibitory effect of CY09, an NLRP3 antagonist, efficiently abrogated the exacerbation effects of diabetes on liver IR injury in db/db mice. Furthermore, increased ROS expression was detected in db/db mice compared to control mice after IR. ROS scavenging by NAC pretreatment markedly inhibited hepatocellular NLRP3 inflammasome activation and pyroptosis in the db/db mice post-IR, indicating that ROS play an essential role in mediating hepatocyte pyroptosis in the setting of diabetes mellitus.ConclusionsOur results demonstrate that diabetes induces hepatocyte pyroptosis by promoting oxidative stress-mediated NLRP3 inflammasome activation during liver IR injury. Strategies targeting ROS and NLRP3 inflammasome activation would be beneficial for preventing liver IR injury in diabetic patients.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call