Abstract

An enhanced susceptibility to infections is well known to occur in a poorly controlled diabetic state. Since glucose and glutamine are essential for lymphocyte function, we investigated whether their metabolism is changed in lymphocytes obtained from mesenteric lymph nodes of alloxan-induced diabetic rats (40 mg/kg body weight). The activities of hexokinase, phosphofructokinase, glucose-6-phosphate dehydrogenase (G6PDH), citrate synthase and phosphate-dependent glutaminase were determined. Decarboxylation of metabolites [U-14C]-, [1-14C]- and [6-14C]-glucose, [1-14C]- and [2-14C]-pyruvic acid, [U-14C]-palmitic acid and [U-14C]-glutamine was evaluated in incubated lymphocytes isolated from mesenteric lymph nodes. The measurements were carried out in cells following three experimental protocols: (1) lymphocytes freshly obtained from control and alloxan-induced diabetic rats, (2) lymphocytes from insulin-treated (2 U/rat per day) diabetic rats and (3) lymphocytes obtained from control and diabetic rats and cultured in the presence of insulin (1 mU/ml) for 6 h. The activities of hexokinase, G6PDH and citrate synthase were decreased by the diabetic state, whereas that of phosphofructokinase was raised. Decarboxylation of [U-14C]- and [6-14C]-glucose, [1-14C]- and [2-14C]-pyruvate and [U-14C]-glutamine were also decreased in lymphocytes from diabetic rats, whereas [U-14C]-palmitic acid decarboxylation was increased. Insulin administration in vivo or added to the culture medium reversed the changes observed in freshly obtained lymphocytes. Alloxan-induced diabetes did change lymphocyte metabolism and this may be an important mechanism leading to impairment of lymphocyte function.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call