Abstract
Impaired blood flow to peripheral nerve trunks makes a major contribution to the neuropathic complications of diabetes mellitus. Comparatively little attention has been paid to perfusion abnormalities for the cell bodies of origin of the autonomic and sensory nerves, although they are severely affected in diabetic neuropathy. The aim was to examine the time course of changes in superior cervical ganglion (SCG) perfusion in streptozotocin-induced diabetic rats. Ganglion blood flow, measured by hydrogen clearance microelectrode polarography, was approximately 70 ml min −1 100 g −1. One week of diabetes caused a 46% perfusion deficit, which was maintained (54%) over 24 weeks. Thus, an early, profound, and long-lived reduction in ganglion perfusion may deleteriously affect neural cell body function and could contribute to autonomic neuropathy.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.