Abstract

Although it is well-documented from theoretical studies that pathogens have the capacity to generate cycles, the occurrence and role of pathogens and disease have been poorly empirically studied in cyclic voles and lemmings. In screening for the occurrence of disease in cyclic vole and lemming populations, we found that a high proportion of live-trapped Clethrionomys glareolus, C. rufocanus, Microtus agrestis and Lemmus lemmus at high collective peak density, shortly before the decline, suffered from diabetes or myocarditis in northern Scandinavia. A high frequency of animals had abnormal blood glucose (BG) levels at the time of trapping (5-33%). In contrast, C. rufocanus individuals tested at a much lower overall density, and at an earlier stage relative to the decline in the following cycle, showed normal BG concentrations. However, a high proportion (43%) of a sample of these individuals kept in captivity developed clinical diabetes within five weeks, as determined by BG levels and a glucose tolerance test performed at that later time. A new picornavirus isolated from the rodents, Ljungan virus (LV), was assumed to cause the diseases, as LV-induced diabetes and myocarditis, as well as encephalitis and fetal deaths, were observed in laboratory mice. We hypothesize that LV infection significantly affects morbidity and mortality rates in the wild, either directly or indirectly, by predisposing the rodents to predation, and is at least involved in causing the regular, rapid population declines of these cyclic voles and lemmings. Increased stress at peak densities is thought to be an important trigger for the development of disease, as the occurrence of disease in laboratory mice has been found to be triggered by introducing stress to LV-infected animals.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.