Abstract

The di(hydroperoxy)adamantane adducts of water (1) and phosphine oxides p-Tol3PO·(HOO)2C(C9H14) (2), o-Tol3PO·(HOO)2C(C9H14) (3), and Cy3PO·(HOO)2C(C9H14) (4), as well as a CH2Cl2 adduct of a phosphole oxide dimer (8), have been created and investigated by multinuclear NMR spectroscopy, and by Raman and IR spectroscopy. The single crystal X-ray structures for 1-4 and 8 are reported. The IR and 31P NMR data are in accordance with strong hydrogen bonding of the di(hydroperoxy)adamantane adducts. The Raman ν(O-O) stretching bands of 1-4 prove that the peroxo groups are present in the solids. Selected di(hydroperoxy)alkane adducts, in combination with AlCl3 as catalyst, have been applied for the direct oxidative esterification of n-nonyl aldehyde, benzaldehyde, p-methylbenzaldehyde, p-bromobenzaldehyde, and o-hydroxybenzaldehyde to the corresponding methyl esters. The esterification takes place in an inert atmosphere, under anhydrous and oxygen-free conditions, within a time frame of 45 minutes to 5 hours at room temperature. Hereby, two oxygen atoms per adduct assembly are active with respect to the quantitative transformation of the aldehyde into the ester.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.