Abstract

Majority of ultrahigh molecular weight polyethylene (UHMWPE) medical devices used in total joint arthroplasty are cross-linked using gamma radiation to improve wear resistance. Alternative methods of cross-linking are urgently needed to replace gamma radiation due to rapid decline in its supply. Peroxide cross-linking is a candidate method with widespread industrial applications. Oxidative stability and biocompatibility, which are critical requirements for medical device applications, can be achieved using vitamin-E as an additive and by removing peroxide by-products through high-temperature melting, respectively. We investigated compression molded UHMWPE/vitamin-E/di-cumyl peroxide blends followed by high-temperature melting in inert gas as a material candidate for tibial knee inserts. Wear resistance increased and mechanical properties remained largely unchanged. Oxidation induction time was higher than most of the other clinically available formulations. The material passed the local-end point biocompatibility tests per ISO 10993. Compounds found in exhaustive extraction were of no concern with margin-of-safety values well above the accepted level, indicating a desirable toxicological risk profile. Statement of Clinical Significance: Peroxide cross-linked, vitamin-E stabilized, and high-temperature melted UHMWPE has recently been cleared for clinical use in tibial knee inserts. With all the salient characteristics needed in a material that can provide superior long-term performance in total joint patients, peroxide cross-linking can replace the gamma radiation cross-linking of UHMWPE.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call