Abstract

The synthesis and characterisation of a series of di-cobalt(II) halide complexes, coordinated by a macrocyclic ancillary ligand, is reported. The new complexes show excellent activity as catalysts for the copolymerisation of cyclohexene oxide (CHO) and carbon dioxide, under just 1 atmosphere of pressure of CO2. The complexation of a series of co-ligands has been investigated, including nucleophiles of varying strength, (4-dimethylaminopyridine (DMAP), N-methylimidazole (MeIm) and pyridine), and the anionic donor (Cl) from bulky ammonium salts, ([HNEt3]Cl, [DBU-H]Cl and [MTBD-H]Cl). Structure–activity studies of the complexes, including X-ray crystallography data, in conjunction with mass spectrometry experiments, are used to support a proposed dinuclear mechanism. The initial rate of copolymerisation, determined using in situ attenuated total reflectance infrared (ATR-IR) spectroscopy, shows a first order dependence on both the catalyst concentration and the concentration of cyclohexene oxide. A dinuclear mechanism is proposed in which catalysis occurs on the convex face of the molecule, leading to chain growth from a single site.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.