Abstract
Compressed natural gas direct injection (DI-CNG) systems in spark ignition (SI) internal combustion engines have shown that it can give several benefits compared to CNG port fuel injection systems. However, the DI-CNG injector nozzle head design and gas jet formation may greatly influence engine exhaust gas emissions and performance. Present experimental study investigated the influence of 7 different nozzle head designs of spray-guided DI-CNG injectors on the combustion process, engine performance, standard emissions, and particulate number (PN) when methane fuel was injected at different injection timings (SOI) and injection pressures (18 bar and 50 bar). The nozzle heads had two main design patterns – heads with small multi holes/orifices and heads with larger crevices (swirl or umbrella spray pattern). Naturally aspirated SI engine tests were conducted at part load (6 bar IMEP) and wide-open throttle (WOT) at 2000 rpm engine speed. The results revealed that the difference between the nozzle heads was small when the fuel was injected at an early stage of the intake stroke (310–350 CAD bTDC) either at part load or high load. However, for late injection timing (130–190 CAD bTDC), the design of the DI-CNG injector nozzle head had a large impact on the combustion stability, standard emissions formation and particulates. Multi-hole nozzle heads showed improved CO2, CO, THC, total PN, and slightly higher NOx emissions compared to nozzle heads with larger crevices. For some of the nozzles, the SOI could be retarded more than for other injector head designs at higher injection pressure whilst still ensuring an acceptable engine performance in terms of combustion stability, power output and emissions formation. Overall, 50-bar injection pressure and a late injection timing under WOT conditions achieved higher engine load levels with all injector nozzle types. Images acquired using an optical endoscope technique with a high-speed video camera showed that a yellow flame was present for all nozzle types at a low injection pressure and late SOI. Increasing the injection pressure reduced the injection duration, improved air/fuel mixing which resulted in the reduced yellow flame formation and lower PN for most of the nozzle heads.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.