Abstract

Bis(2-ethylhexyl) phthalate is the most abundant phthalate used as plasticizer to soften plastics and polymers included in medical devices. Human and environmental exposure may occur because DEHP is not chemically bound to plastics and can easily leach out of the materials. This phthalate is classified as reproductive toxicant and possible carcinogen to humans. The genotoxic potential has still to be clarified, but there are indications suggesting that DEHP may have aneugenic effects. To further investigate DEHP genotoxicity, the cytochalasin-block micronucleus assay was applied and combined with the CREST staining to characterise micronucleus content and gain insights on its genotoxic mode of action. Chromosomal damage was also analysed in metaphase and ana-telophase cells and the morphology of the mitotic spindle was investigated to evaluate the possible involvement of this cellular apparatus as a target of DEHP.Our findings indicated that DEHP induced a statistically significant increase in the frequency of micronuclei as well as in the frequency of CREST-positive micronuclei. Consistently, disturbance of chromosome segregation and induction of numerical chromosome changes were observed together with changes in spindle morphology, formation of multipolar spindles and alteration of the microtubule network. Experiments performed without metabolic activation demonstrated a direct action of DEHP on chromosome segregation not mediated by its metabolites.In conclusion, there is consistent evidence for an aneugenic activity of DEHP. A thresholded genotoxic activity was identified for DEHP, disclosing possible implications for risk assessment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.