Abstract

The content of the cyanogenic glucoside dhurrin in sorghum (Sorghum bicolor L. Moench) varies depending on plant age and growth conditions. The cyanide potential is highest shortly after onset of germination. At this stage, nitrogen application has no effect on dhurrin content, whereas in older plants, nitrogen application induces an increase. At all stages, the content of dhurrin correlates well with the activity of the two biosynthetic enzymes, CYP79A1 and CYP71E1, and with the protein and mRNA level for the two enzymes. During development, the activity of CYP79A1 is lower than the activity of CYP71E1, suggesting that CYP79A1 catalyzes the rate-limiting step in dhurrin synthesis as has previously been shown using etiolated seedlings. The site of dhurrin synthesis shifts from leaves to stem during plant development. In combination, the results demonstrate that dhurrin content in sorghum is largely determined by transcriptional regulation of the biosynthetic enzymes CYP79A1 and CYP71E1.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call