Abstract

Sorghum (Sorghum bicolor) holds a significant position as the fifth most vital cereal crop globally. Its drought resistance and robust biomass production, coupled with commendable nutritional value, make sorghum a promising choice for animal feed. Nevertheless, the utilization of sorghum in animal production faces hurdles of dhurrin (a cyanogenic glycoside) poisoning. While dhurrin serves as a protective secondary metabolite during sorghum growth, the resulting highly toxic hydrogen cyanide poses a significant threat to animal safety. This review extensively examines the biometabolic processes of dhurrin, the pivotal genes involved in the regulation of dhurrin biosynthesis, and the factors influencing dhurrin content in sorghum. It delves into the impact of dhurrin on animal production and explores measures to mitigate its content, aiming to provide insights for advancing research on dhurrin metabolism regulation in sorghum and its rational utilization in animal production.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.