Abstract
Numerous works prove that existing neighbor-averaging graph neural networks (GNNs) cannot efficiently catch structure features, and many works show that injecting structure, distance, position, or spatial features can significantly improve the performance of GNNs, however, injecting high-level structure and distance into GNNs is an intuitive but untouched idea. This work sheds light on this issue and proposes a scheme to enhance graph attention networks (GATs) by encoding distance and hop-wise structure statistics. Firstly, the hop-wise structure and distributional distance information are extracted based on several hop-wise ego-nets of every target node. Secondly, the derived structure information, distance information, and intrinsic features are encoded into the same vector space and then added together to get initial embedding vectors. Thirdly, the derived embedding vectors are fed into GATs, such as GAT and adaptive graph diffusion network (AGDN) to get the soft labels. Fourthly, the soft labels are fed into correct and smooth (C&S) to conduct label propagation and get final predictions. Experiments show that the distance and hop-wise structures encoding enhanced graph attention networks (DHSEGATs) achieve a competitive result.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.