Abstract
The temperature and Zn concentration dependence of the electrical resistivity, specific heat, magnetic susceptibility, and electron paramagnetic resonance (EPR) spectra of YBa2(Cu1−x Zn x )3O7−y withy∼0.1 has been measured forx≤0.16. In addition, the temperature and field dependence of the magnetization has been measured for 2<T<300K and 0<H<9.0T, along with the temperature and quasihydrostatic pressure dependence of the electrical resistivity for selected samples for 0<P<13 GPa. The substitution of Zn for Cu in YBa2Cu3O7−y causes a rapid and nearly linear depression of the superconducting transition temperature,T c , withT c going to 0 K forx≥ 0.10. YBa2(Cu1−x Zn x )3O7−y retains the YBa2Cu3O7-y orthorhombic structure forx≤0.16 for both the superconducting and nonsuperconducting samples. Initially, the unit cell volume increases nearly linearly with Zn content; however, an abrupt change occurs in the vicinityx=0.8–0.10. Forx 0) andρ increases gradually with increasing Zn content. However, forx≥ 0.10,ρ(T) becomes semiconductor-like, with a very rapid increase of the resistivity with increasingx. The electrical resistivity, magnetic susceptibility, EPR spectra, and specific heat all indicate that thed-holes associated with the Cu ions become localized in the nonsuperconducting phase,x>-0.10.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.