Abstract

Botrytis cinerea is the causal agent of gray mold disease in various plant species and produces grayish macroconidia and/or black sclerotia at the end of the infection cycle. It has been suggested that the pigmentation is due to the accumulation of 1,8-dihydroxynaphthalene (DHN) melanin. To unravel its basis and regulation, the putative melanogenic and regulatory genes were identified and functionally characterized. Unlike other DHN melanin-producing fungi, B. cinerea and other Leotiomycetes contain two key enzyme (PKS)-encoding enzymes. Bcpks12 and bcpks13 are developmentally regulated and are required for melanogenesis in sclerotia and conidia respectively. BcYGH1 converts the BcPKS13 product and contributes thereby to conidial melanogenesis. In contrast, enzymes acting downstream in conversion of the PKS products (BcBRN2, BcSCD1 and BcBRN1) are required for both, sclerotial and conidial melanogenesis, suggesting that DHN melanogenesis in B. cinerea follows a non-linear pathway that is rather unusual for secondary metabolic pathways. Regulation of the melanogenic genes involves three pathway-specific transcription factors (TFs) that are clustered with bcpks12 or bcpks13 and other developmental regulators such as light-responsive TFs. Melanogenic genes are dispensable in vegetative mycelia for proper growth and virulence. However, DHN melanin is considered to contribute to the longevity of the reproduction structures.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call