Abstract

Recent works attempt to extend Graph Convolution Networks (GCNs) to point clouds for classification and segmentation tasks. These works tend to sample and group points to create smaller point sets locally and mainly focus on extracting local features through GCNs, while ignoring the relationship between point sets. In this paper, we propose the Dynamic Hop Graph Convolution Network (DHGCN) for explicitly learning the contextual relationships between the voxelized point parts, which are treated as graph nodes. Motivated by the intuition that the contextual information between point parts lies in the pairwise adjacent relationship, which can be depicted by the hop distance of the graph quantitatively, we devise a novel self-supervised part-level hop distance reconstruction task and design a novel loss function accordingly to facilitate training. In addition, we propose the Hop Graph Attention (HGA), which takes the learned hop distance as input for producing attention weights to allow edge features to contribute distinctively in aggregation. Eventually, the proposed DHGCN is a plug-and-play module that is compatible with point-based backbone networks. Comprehensive experiments on different backbones and tasks demonstrate that our self-supervised method achieves state-of-the-art performance. Our source codes are available at: https://github.com/Jinec98/DHGCN.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.