Abstract

Accumulating data suggest that the downregulation of DHCR24 is linked to the pathological risk factors of AD, denoting a potential role of DHCR24 in AD pathogenesis. However, it remains unclear whether the downregulation of DHCR24 affects the abnormal heper-phosphorylation of tau protein, which is involved in tauopathy. In present papers, immunofluorescence and Filipin III fluorescence results showed that DHCR24 knockdown significantly lowered the level of plasma membrane cholesterol and expression level of membrane lipid-raft structural protein caveolin-1; and overexpression of DHCR24 could increase the plasma membrane cholesterol levels and facilitating caveolae structure through increase the expression of caveolin-1. PP2A is the key phosphatase involving in tau phosphorylation, which is localized in cholesterol-dependent caveola/raft lipid domains. Here, the PP2A activity was detected by western blot assay. Interestingly, the level of p-PP2Ac at Y307 (inactive) and p-GSK3β at Y216 (active) in the downstream of the PP2A signal pathway were both significantly increased in silencing DHCR24 SH-SY5Y cells, which denoted an inhibition of the PP2A and activation of GSK3β signaling. Conversely, overexpression of DHCR24 blunted the inhibition effect of PP2A and activation of GSK3β. Besides, in the SH-SY5Y cell lines we demonstrated that DHCR24 knockdown obviously induced hyperphosphorylation of tau at Thr181, Thr231, Ser262, Ser396, and Ser422 Sites. In contrast, DHCR24 overexpression protects neuronal SH-SY5Y cells against the hyperphosphorylation of tau at Thr181, Thr231, Ser262, Ser396, and Ser422 Sites. Furthermore, PP2A activator D-erythro-Sphingosine (DES) also obviously inhibited the hyperphosphorylation of tau induced by DHCR24 knockdown. Collectively, our findings firstly confirmed that DHCR24 knockdown obviously induced abnormal hyperphosphorylation of tau by a novel lipid raft-dependent PP2A signaling. We propose that DHCR24 downregulation led to altered cholesterol synthesis as a potential mechanism in the progression of tau hyperphosphorylation involving in AD and other tauopathies.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call