Abstract

Image super resolution involves enhancing the spatial resolution of low-quality images and improving their visual quality. As in many real-life situations, the image degradation process is unknown, performing the task of image super resolution in a blind manner is of paramount importance. Deep neural networks provide high performances for the task of blind image super resolution, in view of their end-to-end learning capability between the low-resolution images and their ground truth versions. Generally speaking, deep blind image super resolution networks initially estimate the parameters of the image degradation process, such as blurring kernel, and then use them for super-resolving the low-resolution images. In this paper, we develop a novel deep learning-based scheme for the task of blind image super resolution, in which the idea of leveraging the hybrid representations is utilized. Specifically, we employ the deterministic and stochastic representations of the blurring kernel parameters to train a deep blind super resolution network in an effective manner. The results of extensive experiments prove the effectiveness of various ideas used in the development of the proposed deep blind image super resolution network.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call