Abstract

The course of malaria infection in mammals begins with transmission of Plasmodium sporozoites into the skin by Anopheles mosquitoes, followed by migration of the sporozoites to the liver. As no symptoms present until hepatic merozoites are released and until they infect erythrocytes in the blood vessels, sporozoites and liver-stage (LS) parasites are promising targets for anti-malaria drugs aiming to prevent mosquito-to-mammal transmission. In vitro LS parasite development system is useful in the screening of candidate drugs on LS parasite development and the elucidation of its underlying molecular mechanisms, which remain unclear. Using rodent malaria parasites (Plasmodium berghei) as a model, this study aimed to develop an optimal in vitro LS culture system for the full maturation of the LS parasite into the hepatic merozoite, the next infective stage in parasite development. As the development of this system required measurement of maturation, a novel quantitative index of LS parasite maturation based on the expression pattern of liver-specific protein 2 (LISP2) was first developed. The use of this index for comparing the effect of incubation in different culture media on LS maturation revealed that the d-glucose concentration of the culture medium is the key factor promoting parasite development in hepatocytes and that a d-glucose concentration of 2000mg/L/day is the threshold concentration at which the maturation of P. berghei into infective hepatic merozoites is achieved. These findings can be utilized to optimize a human malaria LS culture system for drug discovery.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call