Abstract
Medicine recommendation aims to provide a combination of medicine based on the patient’s electronic health record (EHR), which is an essential task in healthcare. Existing methods either base recommendations on EHRs or provide models with knowledge of drug–drug interactions (DDIs) to achieve DDI reduction. However, the former models the patient’s health history but ignores undesirable DDIs, while the latter lacks mining of patient health records and gets low recommendation accuracy. Therefore, this study contributes to research on personalized medication recommendations that consider drug interaction effects and models the patient’s past medical history. In this paper, the Distance-wise and Graph Contrastive Learning (DGCL) framework is proposed. Specifically, we develop a two-stage neural network module for clinical record learning. We propose the distance detection loss to model the difference between the output distribution of current cases and historical records. In the DDI recognition and control task, DGCL proposes a graph contrastive learning method to jointly train the DDI knowledge graph and the electronic record graph, thereby effectively controlling the level of DDI for recommended medications. By comparing the performance on the MIMIC-III dataset with several baselines, DGCL outperforms other models in terms of efficacy and safety.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.