Abstract

Background and objectivesAutomatic tumor segmentation plays a crucial role in cancer diagnosis and treatment planning. Computed tomography (CT) and positron emission tomography (PET) are extensively employed for their complementary medical information. However, existing methods ignore bilateral cross-modal interaction of global features during feature extraction, and they underutilize multi-stage tumor boundary features. MethodsTo address these limitations, we propose a dual-branch tumor segmentation network based on global cross-modal interaction and boundary guidance in PET/CT images (DGCBG-Net). DGCBG-Net consists of 1) a global cross-modal interaction module that extracts global contextual information from PET/CT images and promotes bilateral cross-modal interaction of global feature; 2) a shared multi-path downsampling module that learns complementary features from PET/CT modalities to mitigate the impact of misleading features and decrease the loss of discriminative features during downsampling; 3) a boundary prior-guided branch that extracts potential boundary features from CT images at multiple stages, assisting the semantic segmentation branch in improving the accuracy of tumor boundary segmentation. ResultsExtensive experiments are conducted on STS and Hecktor 2022 datasets to evaluate the proposed method. The average Dice scores of our DGCB-Net on the two datasets are 80.33% and 79.29%, with average IOU scores of 67.64% and 70.18%. DGCB-Net outperformed the current state-of-the-art methods with a 1.77% higher Dice score and a 2.12% higher IOU score. ConclusionsExtensive experimental results demonstrate that DGCBG-Net outperforms existing segmentation methods, and is competitive to state-of-arts.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call