Abstract

Deep learning-based breast lesion detection in ultrasound images has demonstrated great potential to provide objective suggestions for radiologists and improve their accuracy in diagnosing breast diseases. However, the lack of an effective feature enhancement approach limits the performance of deep learning models. Therefore, in this study, we propose a novel dual global attention neural network (DGANet) to improve the accuracy of breast lesion detection in ultrasound images. Specifically, we designed a bilateral spatial attention module and a global channel attention module to enhance features in spatial and channel dimensions, respectively. The bilateral spatial attention module enhances features by capturing supporting information in regions neighboring breast lesions and reducing integration of noise signal. The global channel attention module enhances features of important channels by weighted calculation, where the weights are decided by the learned interdependencies among all channels. To verify the performance of the DGANet, we conduct breast lesion detection experiments on our collected data set of 7040 ultrasound images and a public data set of breast ultrasound images. YOLOv3, RetinaNet, Faster R-CNN, YOLOv5, and YOLOX are used as comparison models. The results indicate that DGANet outperforms the comparison methods by 0.2%-5.9% in total mean average precision.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.