Abstract
BackgroundAntibody-mediated immune responses play a crucial role in the immune defense of human body. The evolution of bioengineering has led the progress of antibody-derived drugs, showing promising efficacy in cancer and autoimmune disease therapy. A critical step of this development process is obtaining the affinity between antibodies and their binding antigens.ResultsIn this study, we introduce a novel sequence-based antigen–antibody affinity prediction method, named DG-Affinity. DG-Affinity uses deep neural networks to efficiently and accurately predict the affinity between antibodies and antigens from sequences, without the need for structural information. The sequences of both the antigen and the antibody are first transformed into embedding vectors by two pre-trained language models, then these embeddings are concatenated into an ConvNeXt framework with a regression task. The results demonstrate the superiority of DG-Affinity over the existing structure-based prediction methods and the sequence-based tools, achieving a Pearson’s correlation of over 0.65 on an independent test dataset.ConclusionsCompared to the baseline methods, DG-Affinity achieves the best performance and can advance the development of antibody design. It is freely available as an easy-to-use web server at https://www.digitalgeneai.tech/solution/affinity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.