Abstract

In this paper, we have performed the optimized structures of the red emitting material, 4-(dicyanomethylene)-2-methyl-6-[p-(dimethyl amino) styryl]-4H-pyran (DCM), with different polarity solvent environments by using the density functional theory (DFT) method, B3LYP/6-31G*. The time-dependent density functional theory (TD-DFT) and the polarizable continuum model (PCM) have been used to obtain the optical properties in the solvent environment. It has been observed that when the solvent polarity increases, the DCM molecule exhibits the red shift in the maximum absorption wavelength [Formula: see text] and enhances the oscillator strength (f). The solvent polarity also enhances the electron transfer ability from the electron-donating dimethylamine group (-N(CH3)2) to the electron-withdrawing =C(CN)2group. The S0→ S1transition of DCM is found to be π–π*. The maximum absorption wavelengths [Formula: see text] of different solvent environments are found to be consistent with the reported experimental results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.