Abstract
Facies bodies in geostatistical models of deep-water depositional environments generally represent channel-levee-overbank-lobe morphologies. Such models adequately capture one set of the erosional and depositional processes resulting from turbidity currents traveling downslope to the ocean basin floor. However, depositional morphologies diverge from the straight forward channel-levee-overbank-lobe paradigm when the topography of the slope or the shape of the basin impacts the timing and magnitude of turbidity current deposition. Subaqueous mass-transport-deposits (MTDs) present the need for an exception to the channel-levee-overbank-lobe archetype. Irregular surface topography of subaqueous MTDs can play a primary role in controlling sand deposition from turbidity currents. MTD topography creates mini-basins in which sand accumulates in irregularly-shaped deposits. These accumulations are difficult to laterally correlate using well-log data due to their variable and unpredictable shape and size. Prediction is further complicated because sandstone bodies typical of this setting are difficult to resolve in seismic-reflection data. An event-based model is presented, called DFTopoSim, which simulates debris flows and turbidity currents. The accommodation space on top of and between debris flow lobes is filled in by sand from turbidity currents. When applied to a subsurface case in the Molasse Basin of Upper Austria, DFTopoSim predicts sand packages consistent with observations from core, well, and seismic data and the interpretation of the sedimentologic processes. DFTopoSim expands the set of available geostatistical deep-water depositional models beyond the standard channel-levee-overbank-lobe model.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.