Abstract

This paper focuses on the Delay/Fault-Tolerant Mobile Sensor Network (DFT-MSN) for pervasive information gathering. We develop simple and efficient data delivery schemes tailored for DFT-MSN, which has several unique characteristics such as sensor mobility, loose connectivity, fault tolerability, delay tolerability, and buffer limit. We first study two basic approaches, namely, direct transmission and flooding. We analyze their performance by using queuing theory and statistics. Based on the analytic results that show the tradeoff between data delivery delay/ratio and transmission overhead, we introduce an optimized flooding scheme that minimizes transmission overhead in flooding. Then, we propose a simple and effective DFT-MSN data delivery scheme, which consists of two key components for data transmission and queue management, respectively. The former makes decision on when and where to transmit data messages based on the delivery probability, which reflects the likelihood that a sensor can deliver data messages to the sink. The latter decides which messages to transmit or drop based on the fault tolerance, which indicates the importance of the messages. The system parameters are carefully tuned on the basis of thorough analyses to optimize network performance. Extensive simulations are carried out for performance evaluation. Our results show that the proposed DFT-MSN data delivery scheme achieves the highest message delivery ratio with acceptable delay and transmission overhead.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call