Abstract

Oxygen vacancies are a common source of excess electrons in complex oxides. In Mott insulators these additional electrons can induce a metal-insulator transition (MIT), fundamentally altering the electronic properties of the system. Here we study the effect of oxygen vacancies in LaTiO3, a prototypical Mott insulator close to the MIT. We show that the introduction of oxygen vacancies creates a vacancy-related band immediately below the partially filled Ti-t2g bands. We study the effect of this additional band on the Mott MIT using a combination of density functional theory and dynamical mean-field theory (DFT+DMFT), employing a minimal correlated subspace consisting of effective Ti-t2g orbitals plus an additional Wannier function centered on the vacancy site. We find that the Mott insulating state in LaTiO3 is robust to the presence of the vacancy band, which remains fully occupied even in the presence of a local Coulomb repulsion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.