Abstract

An efficient and accurate description of the electronic structure of a strongly correlated metal-oxide semiconductor like NiO has been notoriously difficult. Here, we study the capabilities and limitations of two frequently employed correction schemes, a DFT+U on-site correction and a DFT+1/2 self-energy correction. While both methods individually are unable to provide satisfactory results, in combination they provide a very good description of all relevant physical quantities. Since both methods cope with different shortcomings of common density-functional theory (DFT) methods (using local-density or generalized-gradient approximations), their combination is not mutually dependent and remains broadly applicable. The combined approach retains the computational efficiency of DFT calculations while providing significantly improved predictive power.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.